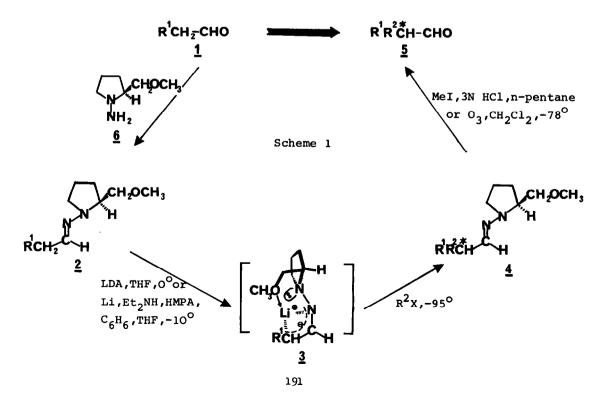
Tetrahedron Letters No. 2, pp 191 - 194, 1977. Pergamon Press. Printed in Great Britain.

ENANTIOSELECTIVE ALKYLATION OF ALDEHYDES VIA METALATED CHIRAL HYDRAZONES


Dieter Enders* and Herbert Eichenauer

Institut für Organische Chemie, Justus Liebig-Universität, Heinrich-Buff-Ring, 6300 Giessen, Germany

(Received in UK 28 September 1976; accepted for publication 29 November 1976)

We recently reported an efficient asymmetric synthesis of α -substituted ketones by metalation and alkylation of chiral hydrazones¹. α -chiral aldehydes <u>5</u>, which are valuable as reactive chiral synthons in organic synthesis² and for mechanistic studies, are hard to prepare³. Methods using optical activation via immonium salts⁴ or asymmetric hydroformylation⁵ give only aldehydes of low enantiomeric purity.

We describe here the first asymmetric synthesis of α -chiral aldehydes via C-C bond formation $\underline{1} \rightarrow \underline{5}$ (scheme 1) in good chemical yields and, in some cases, high enantiomeric purity. As the chiral auxiliary we use (S)-1-amino-2-methoxymethyl-pyrrolidine <u>6</u>, easily prepared in four steps (55% overall yield) from commercially available (S)-proline¹.

The method involves conversion of the aldehydes <u>1</u> into the chiral hydrazones <u>2</u>, metalation with lithium diisopropylamide (LDA) in THF at 0^{o 6} (method A) or with Li/Et₂NH/HMPA/benzene/THF at $-10^{\circ 7}$ (method B) and alkylation at -95° to <u>4</u>. The now $\not{\sim}$ -substituted aldehydes <u>5</u> are regenerated by hydrolysis of the methiodides⁸ of <u>4</u> in a two-phase system (3N HCl, n-pentane) or by ozonolysis (CH₂Cl₂,-78^o)⁹. The ozone cleavage permits recovery of the chiral reagent <u>6</u>¹. The results of various alkylations are summerized in table 1.

The hydrazones $\underline{2}$ and $\underline{4}$ are oils, which can be purified by distillation or column chromatography¹⁰, while the lithium compounds $\underline{3}$ precipitate from the reaction mixtures. As indicated in formula $\underline{3}$ the lithium ion is probably intramolecularly chelated to provide a conformative rigidity necessary for a high asymmetric induction¹¹. Although the Cahn-Ingold-Prelog rules cause $\underline{5a}$ to be assigned the S configuration, all aldehydes are configurationally related since the chelates $\underline{3}$ are preferably alkylated from the topside (from above the plane of the paper)¹².

Since the aldehydes 5 can be reduced (see footnote c in table 1) and oxidized without racemization the corresponding β -chiral alcohols and α -chiral acids are also available by this method.

Improvement and further development by variation of the chiral auxiliary as well as the carbonyl compounds and electrophiles are in progress.

(<u>R)-2-Methyloctanal 5e</u>. Compound <u>6</u> (2.6g, 20 mmol) is treated dropwise with n-octanal (3.12ml,20mmol) with stirring at 0°. After 2 hr the crude product is dissolved in CH_2Cl_2 and the resulting solution dried over sodium sulfate, concentrated in a rotary evaporator, and finally purified by column chromatography (silicagel, n-pentane/ether 3:1). <u>2</u>, R¹= n-C₆H₁₃, is obtained in 96% yield (4.6g) as a colorless oil, $[\alpha]_D^{22} = -103^{\circ}$ (c=1.8, benzene). <u>2</u> (2.4g,10mmol) is metalated according to the method of Normant et al.⁷ (metalation time 10h), cooled to -95° and treated with a solution of methyliodide (0.68ml,11mmol) in 15 ml THF. The mixture is stirred for a further 3 hr and allowed to warm to room temperature. After hydrolysis, work up with ether yields <u>4</u>, R¹= n-C₆H₁₃, R²= CH₃, 2.3g (91%). The crude product is treated with excess methyliodide and stirred at 60° for 5 hr. The resulting salt is hydrolysed in a two-phase system (3N HCl, n-pentane) by rapid stirring for 30 min. <u>5e</u> is purified by molecular distillation over glass wool (oil bath temperature 100°/3 torr).

<u>Acknowledgement</u> - This work was supported by a Liebig-Stipendium from the Verband der Chemischen Industrie to D.E. and the Deutsche Forschungsgemeinschaft (project En 109/1). The authors thank Prof. P. Pino (Zürich) for the communication of rotations. Table 1. \ll -Chiral aldehydes 5 prepared by asymmetric synthesis. The newly coupled C-C bonds are shown in bold print. Compounds 4 were generally converted into 5 by hydrolysis of the methiodides; 5b and 5f, however, were obtained by ozonolysis.

	aldehyde	r ² x	$\left[\alpha\right]_{D}^{T}(c, \text{solvent})^{a}$	<pre>%ee(cfg.)</pre>	<pre>verall^b yield</pre>
<u>5a</u>	* сно С , н ,	C ₆ H ₅ CH ₂ Br	+4 ²⁰ (1.25,acetone) c	82 (S)	62
<u>5b</u>	СНО	сн ₃ і	-20.2 ²⁰ (2.3,acetone) -31.4 ²⁰ (2.73,acetone) ²	2 62 (R)	65
<u>5c</u>	Сно	снзі	-36.9 ²⁰ (neat) -65.2 (neat) ¹⁴	57 (R)	60
<u>5a</u>	СНО	снзі	-26.6 ²⁰ (0.95,acetone) d	(R)	67
<u>5</u> e -	~~~* ^{CI}	IO _{CH3} I	-25.8 ²⁰ (neat) -29.76 ²⁵ (neat) ^e	87 (R)	61
<u>5f</u>	С₅Н₅_∗СНО	(CH ₃) ₂ SO ₄	-74.1 ²⁵ (neat) -238 ²⁵ (neat) ^f	31 (R)	80 ^g

a) First value: rotation of the distilled, spectroscopically (ir, pmr) pure aldehydes. Second value: highest rotation quoted in the literature (values in degrees). - b) Obtained with metalation method B. - c) Not previously reported; 5a was reduced with BH₃·THF complex to (S)-2-benzylpropanol $[\alpha]_D^{22} = -10^{\circ}$ (neat), 82% ee, based on $[\alpha]_D^{26} = +12.2^{\circ}$ (neat)¹³; determination of % ee of 5a using the chiral shift reagent tris[3-(heptafluoro-1-hydroxybutylidene)-(d)-campherato]europium(III) failed. - d) Not previously reported; by comparison with the rotation of 5b we assume that 5d is of high enantiomeric purity. - e) Calculated from the data reported in ref. 5. - f) Calculated max. rotation, the highest measured rotation reported in the literature is about 40^{o 15}. - g) Metalation method A was used.

References and Notes

- D. Enders and H. Eichenauer, <u>Angew. Chem.</u> <u>88</u>, 579 (1976); <u>Angew. Chem.</u> Int. Ed. Engl. <u>15</u>, nr 9 (1976).
- For a recently reported application see: K. Banno and T. Mukaiyama, <u>Chem</u>. <u>Lett</u>. 279 (1976).
- 3. G. Otani and S. Yamada, <u>Chem. Pharm. Bull. 21</u>, 2112 (1973) and lit. cited therein; aldehydes of type <u>5</u> can be prepared starting from chiral precursors, e.g. alcohols [E.J. Badin and E. Pascu, <u>J. Amer. Chem. Soc. 67</u>, 1352 (1945)], alkylhalides [D. Seebach, D. Steinmüller, and F. Demuth, <u>Angew. Chem. 80</u>, 618 (1968); <u>Angew. Chem. Int. Ed. Engl. 7</u>, 620 (1968)] or steroids¹⁴.
- H. Matsushita, M. Noguchi, M. Saburi, and S. Yoshikawa, <u>Bull. Chem. Soc</u>. Jap. 48, 3715 (1975).
- 5. G. Consiglio, C. Botteghi, C. Salomon, and P. Pino, <u>Angew. Chem</u>. <u>85</u>, 663 (1973); <u>Angew. Chem. Int. Ed. Engl</u>. 12, 669 (1973).
- 6. While $\underline{2}$, $\mathbb{R}^1 = \mathbb{C}_{6}H_5$, can be metalated quantitatively under these conditions in 2 hr, in all other cases about 25 % of starting material is recovered even after 15 hr metalation time; for the metalation of N,N-dimethylhydrazones (DMH's) see: E.J. Corey and D. Enders, <u>Tetrahedron Lett</u>. 3,11(1976); E.J. Corey, D. Enders, and M. G. Bock, ibid. 7 (1976).
- 7. T. Cuvigny, J.F. Le Borgne, M. Larchevêque, and H. Normant, <u>Synthesis</u> 237 (1976); quantitative metalation of compounds <u>2</u> is possible with prolonged metalation times (10 hr).
- 8. M. Avaro, J. Levisalles, and H. Rudler, Chem. Commun. 445 (1969).
- 9. R.E. Erickson, P.J. Andrulis, J.C. Collins, M.L. Lungle, and G.D. Mercer, J. Org. Chem. 34, 2961 (1969).
- 10. The new compounds 2 and 4 give correct elemental analyses; ir, pmr, and mass spectra are in agreement with the given structures.
- 11. The fact that the rotations of the product aldehydes 5 are independent of the metalation method A or B used (even though in procedure B the strongly cation-solvating HMPA is present) points to a strong chelation in 3; after metalation of aldehyde-DMH's⁶ and reaction with electrophiles the thermodynamically less stable Z-isomers predominate in the crude products; this indicates the ability of the amino-nitrogen to chelate in metalated hydrazones.
- For a similar situation in chiral metalated 2-oxazolines see: A.I. Meyers, G. Knaus, K. Kamata, and M.E. Ford, <u>J. Amer. Chem. Soc</u>. <u>98</u>, 567 (1976).
- 13. K.B. Wiberg and T.W. Hutton, J. Amer. Chem. Soc. 78, 1640 (1956).
- 14. K. Rsuda, Y. Kishida, and R. Hayatsu, J. Amer. Chem. Soc. 82, 3396 (1960).
- 15. C. Botteghi, G. Consiglio, and P. Pino, Liebigs Ann. Chem. 864 (1974).